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The methods of automated determination of the thermophysical properties and thermal analysis of
various objects (solid bodies, dispersed materials, and liquids) are substantiated. They are based on
program variation of thermal fields in the experiment.

Traditional methods of determining a set of thermophysical properties of various objects (solid bod-
ies, dispersed and fibrous materials, liquids) are laborious, require much time and need various apparatuses
and unlike conditions − all adding up to complexity of the analysis and generalization of the data obtained,
choice of the field of application, comparison of the theory with experiment, etc. [1−4].

It may be asserted that a certain gap has been formed between the capabilities of the current methods
and the growing needs for determining the thermophysical properties of both well-known and newly synthe-
sized substances and materials that have different physicochemical properties, different types of structure, dif-
ferent technologies of manufacture, etc.

It has become possible to shorten considerably the time of measurements and increase their accuracy
thanks to the creation of new, variational, methods for experimentally studying the physical properties of ob-
jects. These methods are based on discrete changes in the influencing factors that are successively applied to
the object of investigation or removed from it and on corresponding recording of the primary information
signals that determine the parameters (magnitude, direction of influence, and its duration) of each influencing
factor and of the parameters of the response of the object to each separate factor or group of influencing
factors; these methods are implemented experimentally with the aid of a system of computer-based automated
investigation of a set of thermophysical and thermal properties of objects [5–7].

In what follows, the theory of nonstationary methods of determining thermophysical properties and
carrying out a nonstandard differential thermal analysis of various objects of investigation is presented.

Determination of Thermal Conductivity. The method considered makes provision for parasitic heat
losses (heat exchange of a block and of an object of investigation with the environment and thermal resis-
tances of their contact surfaces), which are the main sources of methodological errors in the means of deter-
mining thermophysical properties of materials.

The idea of the proposed method of determining λ is schematically presented in Fig. 1a. A closed
isothermal temperature chamber 1, whose walls have the same temperature T0 fixed in the process of meas-
urement, has inside a mobile block 2 and an object of investigation 3 placed between the mobile block and
the base of the temperature chamber. To simplify the solution, the thermal resistance on the end faces of the
specimen is represented in the form of one contact layer of doubled thickness. The heat-conduction equations
for the block 2, specimen 3, and contact layer 4, respectively (Fig. 1a), are of the form
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Here T′(x, τ) = T(x, τ) − T0. The boundary-value conditions are presented by the expressions
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Fig. 1. Basic diagram of the method of determining thermal conductivity
[a: 1) temperature chamber; 2) block; 3) object of investigation; 4) con-
tact layer]; techniques of determining the rates of cooling [b) mblock

e  of
the block; c) mc.layer of contact resistances (block−copper plate−contact
layer); d) mth.st of the thermal structure (block−object−contact layer)], and
the curves of cooling measuring elements (e).
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T3
 ′ (x, 0) = 0 ,     T4

 ′ (x, τ) = 0 . (9)

Equations (1)−(3) under boundary-value conditions (4)−(9) are solved by the method of operational
calculus [8]. Omitting the intermediate calculations, we obtain that on the object of investigation at any time
instant
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(10)
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From expression (10) it is seen that with time the cooling of the block follows a strictly exponential
law. The power of the exponent mth.st characterizes the rate (tempo) of cooling the thermal structure
"block−object of investigation−contact layer." The quantity mth.st can be represented as an algebraic sum of
the rates of cooling:
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 , (13)

mblock = mblock
e  






1 − 

s3 − 
d3l3

3

S2
tot






  , (14)

mblock
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 , (15)

mc.layer = 
λ4s3

l4C2
 , (16)

and then expression (12) takes the form

mth.st (1 + β) = 
1

1
m0

 + 
1

mc.layer

 + mblock .
(17)

Equation (17) can easily yield an equation for determining the thermal conductivity of the object of
investigation:
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λ3 = C2 
l3
s3

 (1 + β) m0 , (18)

in which

m0 = 
mth.st (1 + β) − mblock

1 − 
mth.st (1 + β) − mblock

mc.layer

 . (19)

The quantity m0 is attributable to the change in the heat content of the upper block due to the heat
flux through the specimen (a → 0, λ4 and λ2 → ∞, i.e., when heat losses are equal to zero); the rates of
cooling mblock and mc.layer result from heat exchange of the block inside the isothermal chamber and from heat
conduction between the block and the contact layers at the boundaries of the object with the block and the
base of the temperature chamber.

On the whole, the considered process of cooling the thermal system "block−object of investiga-
tion−contact layer" can be considered as a result of variation of three independent influencing factors: heat
exchange of the block with the walls of the isothermal temperature chamber, the heat flux through the speci-
men, and the heat flux through the contact layer. In accordance with these statements, the total rate of cooling
m is determined in three stages by finding the rates mblock

e , mc.layer, and mth.st following the schemes presented
in Fig, 1b, c, and d, respectively. Practically, mc.layer is determined from the curve of cooling the block
through a thin copper plate (< 0.001 m), both sides of which are covered by a contacting liquid whose ther-
mal conductivity greatly exceeds that of the air in the pores of the contacting surfaces (for example, glycerin,
silicone oil, an In−Ga eutectic solution, etc.). To reduce the thermal resistance, the block and the plate are
fabricated from a highly conductive material (copper), and the end faces of the block and the specimens are
polished beforehand. The rates of cooling (mblock

e , mc.layer, and mth.st) are determined from the curves that
show the change in time of the temperature of the measuring elements (Fig. 1e): 

m = 
ln VT1

 − ln VT2

τ2 − τ1
 . (20)

Thus, it is shown that the main sources of errors in measuring thermophysical properties (heat losses)
can be represented in the experiment as constants of the setup for the given block and contact layer in terms
of the rates of cooling mblock

e  and mc.layer and correspondingly can be eliminated.
Determination of Thermal Diffusivity. The schematic representation of the method of determining

the value of k is given in Fig. 2. Placed in the isothermal chamber 1 (Fig. 2a) are: a thermal block 2 and an
object of investigation 3 (a solid body and a cell with dispersed material or liquid). The object 3 is placed on
a thin copper plate 4 fastened at the base of the chamber by heat-insulating pillars 5.

At the initial time instant τ = 0 and during the whole experiment, the upper block is kept at a con-
stant temperature of T2

′ (l2, τ) = Tm. At the time τ = 0, the block is placed on the object 3 and then, when
τ > 0 (Fig. 2b), the process of measuring is started. For τ > 0, the problem concerning the change in the tem-
perature ∆T(τ) of its lower end face in time relative to T0 of the temperature chamber is reduced to the so-
lution of heat-conduction equation (2) under the boundary-value conditions

T ′ (0, τ) = T0
 ′ ;   T ′ (x, 0) = 0 ;   ∂T ′ (∞, τ) ⁄ ∂x = 0 . (21)

Taking into account the fact that the surface of the block is much larger than the side surface of the speci-
men, the solution of this problem is governed by the expression
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in which erfc (x) is the tabulated integral of probability; therefore, the value of k can easily be found at the
prescribed values of l3 and Tm and at the values of ∆T(τ) and τ measured in the experiment.

If the block is installed on the object of investigation prior to the start of measurements, then for the
period of its heating (Fig. 2b) to the temperature Tm(τm) the temperature of the lower face of the object also
rises by the value ∆T(τm). Then expression (22) will not be exact already, and this will result in an error in
determining the true value of k. With this fact being taken into account, the boundary conditions will have
the form

T ′ (l2, 0) = T ′ (l2 + l3, 0) = 0 ;   T ′ (l2, τ) = vτ ;   T ′ (∞, τ) = 0 . (23)

Solving Eq. (2), we obtain (omitting, for simplicity, the intermediate calculations and limiting the dis-
cussion to the terms of the second order of smallness) the following expression for the time-varying tempera-
ture of the lower end face of the object under investigation:
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Thus, taking account of the duration of the heating τm of the block that results in the change in the
temperature of the lower face of the object by the value ∆T(τm) leads to the elimination of the methodologi-
cal error introduced by this effect into the determination of the value of k. Numerical values of the erfc func-
tion in Eq. (24) at measured values of Tm, ∆T(τ − τm), τm, and τ makes it possible to find its argument and
correspondingly the value of k of the object from the tables given in [8].

Fig. 2. Basic diagram of the methods of determining thermal diffusivity
(a, b) and of the temperature behavior of thermal conductivity (c); a)
placement of the elements of the thermal structure [1) temperature cham-
ber; 2) block; 3) object of investigation; 4) plate; 5) heat-insulating pil-
lars]; b) heating of the elements of the thermal structure [1) heating of
the block to the temperature Tm(τm); 2) increase of the temperature of the
lower end face of the object by ∆T(τm) and thereafter by ∆Tm(τ − τm) in
measuring k]; c) diagrams of the change in T(τ) [1) chamber; 2) thermal
structure "block−object−contact layer" on heating, and 3) cooling, respec-
tively; 4) predicted curve].
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Determination of the Heat Capacity. The schematic representation of the nonstationary method of
determining the C value is given in Fig. 3a. The object of investigation 3 (solid materials in the form of
disks, dispersed and liquid substances in a closed cylindrical copper cell with a thin heat-insulating side wall
of height no more than 0.005 m) is preliminarily heated to the temperature T(τ) by 8−10o above the T0 of
chamber 1, and then with block 2 fixed above it is placed on the copper plate 4, and thereafter the process
of its cooling in time is recorded continuously:

T ′ (τ) = T0 exp (− m3τ) . (25)

The value of m3 is determined similarly to the scheme shown in Fig. 1e. It can easily be seen that

m3 = 
aS3

tot

C3
 .

(26)

Measuring separately mcell and noting that C3 = Ccell + Csam, we respectively obtain the values

msam = 
m3

1 − 
m3

mcell

 , (27)

Csam = 
mblock

m3

 
S3

tot

S2
tot C2 




1 − 

m3

mcell




 . (28a)

Formula (28a) allows one to determine easily the mass of water (or of any other liquid) in different materials,
keeping in mind that

Csam = Csp.wMw + Csp.d.mMd.m . (28b)

For this purpose, it is only necessary that the specific heat of a dry mass of dispersed material be measured
preliminarily in the cell.

Determination of the Temperature Behavior of the Thermal Conductivity. Consider now the
measurement of the thermal conductivity in a wide temperature range. The case of the temperature of the
environment changing in a stepwise fashion from one fixed value to another is of no interest, since this
method of measuring the behavior of the temperature λ(T) entails a large expenditure of time and hinders the

Fig. 3. Basic diagram of the method of determining a set of thermophysi-
cal properties of objects in a single experiment; a) of heat capacity C; b)
thermal diffusivity k; 1, 2, 3, 4, 5) elements similar to those presented in
Fig. 2a.
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possibility of subsequently automating the process of measurement of the thermal conductivity. Therefore, we
will keep in mind that the temperature of the environment undergoes changes and assume for simplicity that
it does so following the linear law

T ′ (τ) = T (τ) − T0 (0) = vτ . (29)

This is the condition under which continuous variation in time of two independent influencing factors occurs
(heat fluxes in the object of investigation): that of the external linear and internal (heat flux from the block)
exponential. It is evident that the resulting character of the change in the heat flux in the sample only under
certain conditions can be represented in the form of the additive sum of acting heat fluxes. The heat-conduc-
tion equation and boundary-value conditions for the object of investigation with allowance for heat transfer to
the environment (to simplify, the contact thermal resistances on the end faces of the sample are considered to
be equal to zero) have the form

∂2T3
 ′ (x, τ)

∂x2  − 
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λ3s3
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T2
 ′ (x, 0) = 0 . (33)

The solution of Eq. (30) under the boundary-value conditions (31)−(33) is performed by the method
of operational calculus [8]. Omitting intermediate calculations, write the final expression in the space of in-
verted transforms for the change in the pressure drop on the sample:
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The second term in formula (34) can be represented in a simpler form if it is taken into account that
the powers of exponents can always be restricted to a value smaller than unity. Then, expanding the expo-
nents into a Taylor series and limiting the discussion to terms of the first order of smallness yield

∆T = 
T0

 ′

1 + β
 exp (− mth.stτ) − vτ 




1 − 

mth.stk3

l3
2  τ2



 . (35)

From this expression it is seen that the change in the temperature drop ∆T on the sample at each given in-
stant of time is the result of the variation of opposite heat fluxes caused by exponential cooling of the ther-
mal system "block−object of investigation" ∆Tth.st and linear increase in the temperature of the temperature
chamber ∆Tt.ch. This process is terminated by the time instant at which the temperature of the block and of
the sample become equal to the temperature of the chamber; thereafter they are heated jointly.

Figure 2c presents the distribution of the electromotive forces that are proportional to the change in
the temperature of the chamber ∆Tt.ch (curve 1) and also to the change in the temperature ∆Tth.st in the period
of fast heating (curve 2) and subsequent cooling (curve 3). In the experiment, the temperature of the block is
raised several degrees above the temperature of the chamber by switching-on a heater placed inside the block;
the curves ∆T and ∆Tt.ch are continuously recorded on the screen of a monitor. Curve 4 over the time interval
from τ = τm to τ = τt.ch characterizes the change in the temperature of the object of investigation ∆T =
∆Tth.st − ∆Tt.ch as though the temperature of the chamber did not change at that time instant. The unknown
quantity mth.st is determined precisely from this curve. The constants of the device mblock

e (Tt.ch) and
mc.layer(Tt.ch) are determined similarly to the method described above.

Determination of a Set of Thermophysical Properties in a Single Experiment. The essence of the
method of determining the set of thermophysical properties of objects in a single experiment consists of suc-
cessive specification in time of the initial and boundary conditions of the process of heating and cooling the
thermal structure "block−object−plate" inside an isothermal chamber.

Measurements are made in the sequence C, k, λ, in which their overall duration and errors of deter-
mination of the set of thermophysical properties are at a minimum (Fig. 3):

a) to determine the value of C, the object of investigation is preliminarily heated to a temperature
8−10o higher than the temperature of the chamber and then is installed on a thin copper plate; thereafter, the
process of change in time of the mean volumetric temperature of cooling of the object is fixed. The value of
C is determined from Eqs. (28a) and (28b);

b) to find the thermal diffusivity, the upper block is automatically descended on the object of inves-
tigation and is heated to a fixed temperature following a program prescribed by a computer. Thereafter, the
change in time of the temperature of the lower end face of the object ∆T is recorded. The value of k is
determined from formula (24);

c) to determine the thermal conductivity, the thermal structure "block−object of investigation−plate" is
automatically descended until a complete contact is reached with the base of the chamber, after which the
process of cooling-off of the thermal structure in time relative to the constant temperature of the chamber is
recorded; the value of λ is determined from Eq. (18).

The Method of Nonstandard Differential Thermal Analysis. An example of the use of a thermo-
physical mechanism to investigate the physicochemical properties of materials with the aid of variation of
two heat fluxes, of which one is external and the other internal, is the well-known [9] method of differential
thermal analysis. The internal heat flux directed opposite to the external one or co-flowing with it originates
within the sample itself in a certain definite temperature interval attributable to the appearance of endo- or
exothermal effects in it and is fixed by the difference of temperatures ∆T1,2 between the substance investi-
gated A (Fig. 4c, curve 3, at the zone of the point C) and some standard substance B in which these effects
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are absent in the given temperature range. Both substances are placed in special crucibles 1 and 2 installed
inside one chamber 3 (Fig. 4a). The temperatures and magnitudes of thermal effects appearing in the sub-
stance investigated are found from simultaneous analysis of curves 1 and 3 (Fig. 4c) that depict the changes
in time of the quantities T1(τ) and ∆T1,2(τ) in the process of heating or cooling of the sample and the stand-
ard. It is obvious that the accuracy of recording thermal conversions in the substance under investigation will
depend on the properties of the standard, the constancy of the rate of change in the temperature of the cham-
ber, the geometry, and the thermophysical characteristics of experimental crucibles or ampoules and also on
the place of disposition and identity of measuring thermocouples.

If ampoules with a substance have the form of a cylinder for which L >> R, then the distribution of
temperature over the cylinder radius (provided that at r = 0 the temperature is finite and at r = R the surface
temperature is equal to the environmental one) will be described by the equation

∂2T1,2 (r, τ)

∂r2  + 
1

r
 
∂T1,2 (r, τ)

∂r
 = 

1

k1,2
am 

∂T1,2 (r, τ)

∂τ
 + 

q1,2 (r, T1,2)

λ1,2
am  . (36)

The subscripts 1 and 2 relate to the substance under investigation and the standard, respectively. The solution
of this equation at q1,2 = 0 (when there are no endo- and exothermal effects) has the form

T1,2 (r, τ) = T0 + v1,2τ − 
v1,2 (R

2 − r2)

4k1,2
am  + 

v1,2R
2

k1,2
am   ∑ 

n+1

∞
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2 J0 




µn 

r

R




 exp 




− 

µn
2τ

R2




 , (37)

Fig. 4. Scheme of the methods of thermal analysis: differential thermal
analysis (a) and nonstandard differential thermal analysis (b): a) the dif-
ferential thermal analysis, ampoules A (object of investigation) and B
(standard) in crucibles 1 and 2 inside a single temperature chamber 3; b)
the nonstandard differential thermal analysis, ampoules A (objects of in-
vestigation) in crucibles 1 and 2 in separate chambers 3 and 4; c) curves
of the temperatures of heating 1 and 2, cooling 1′ and 2′ of ampoules A
and temperature difference 3 and 3′ between them; C and D, zones of
thermal effects at v1 = v2 and v1 ≠ v2, respectively.
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where An = r ⁄ [µnJ1(µn)] are the initial thermal amplitudes; J0



µn

R
 r




 is the Bessel function of the first-kind

and zero order of the argument µn 
r
R

, and µn are the roots of the equation J0(µn) = 0.

After a certain time τ, the last term in Eq. (37) tends to zero and a quasistationary regime develops
in the ampoules, in which the temperature at any point r over the section of the ampoules has the form

T1,2 (r, τ) = T0 + v1,2τ − 
v1,2

4k1,2
am (R2 − r2) . (38)

The difference between the temperatures ∆T1,2 = T1 − T2 of the object and the standard at v1 = v2 is deter-
mined by the expression

∆T1,2 (τ) = 
v

4πL
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λ1
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

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 . (39)

From Eq. (39) it follows that ∆T1,2(τ) = 0 within the entire temperature interval only when C2
am ⁄ λ2

am =
C1

am ⁄ λ1
am, i.e., the principal condition of the differential thermal analysis is the preservation of the zero tem-

perature difference between the object and the standard in the absence of thermal conversions in them. How-
ever, in practice it is very difficult to satisfy the condition ∆T1,2(τ) = 0, since the thermophysical parameters
of the substance and standard (λ1

am, C1
am, λ2

am, C2
am) depend differently on temperature. Moreover, essential

here are the conditions of heat exchange of the sample and the standard with the environment. In the latter
case, it should be kept in mind that the temperature of the sample and standard is

T1,2 (r, τ) = T0 + v1,2τ − 
v1,2R

2

4k1,2
am  




1 + 

2λ1,2
am

a1,2
amR

 − 
r2

R2




 , (40)

and the quantity ∆T1,2(τ) at v1 = v2 has the form

∆T1,2 (τ) = 
vR2
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




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2λ2

am
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amR
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2λ1
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k1
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r2
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1

k2
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1

k1
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











  .
(41)

From Eq. (41) it is evident that ∆T1,2(τ) may substantially be varied in the process of thermal analysis at
different values of a1

am and a2
am from the surface of the object and standard. The factors considered above (the

difference in thermophysical parameters, conditions of heat exchange, rates of heating, geometries of the ob-
jects and standards, etc.) is one of the main sources of error in the determination of temperatures and heat of
conversion of thermal effects.

We suggested [10] a different technique of nonstandard differential thermal analysis. This technique
is based on variation of two homogeneous pairs of heat fluxes (external and internal) in separate, but identical
in geometry and properties, objects of investigation. For this purpose, the technique involves two identically
changing in time external heat fluxes, each of which is localized in two identical ampoules 1 and 2 with the
same substance A (Fig. 4b) located in two identical temperature chambers 3 and 4. Naturally, of importance
for thermal analysis is the design of the ampoules, whose geometry must be selected so that the length of the
cylinder be at least larger than its doubled diameter; for distinct recording of the beginning and end of ther-
mal effects, the thickness of the substance placed in the cylindrical ampoule must not exceed several hun-
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dredths of a fraction of the cylinder length. The process of measurement consists of simultaneous recording
of the temperatures of both substances and of the difference between them on the computer screen. Then, as
can easily be seen (since λ1

am = λs
am and k1

am = k2
am), the expression for the temperature drop at a1

am = a2
am is

∆T1,2 (τ) = T1 − T2 − (v1 − v2) τ . (42)

On the condition that the character of changes of heat fluxes is kept linear but the velocities v1 ≠ v2 (though
they are invariable in time), the value of T changes according to Eq. (42). But if the chambers are heated so
that v1 = v2, then there is a quasistationary regime, for which, in the absence of thermal effects in the sub-
stance,

∆T1,2 (τ) = T1 − T2 = const . (43)

The character of the representation of the measured quantities T1, T2, and ∆T1,2(τ) in the case of v1 = v2 and
v1 ≠ v2 is shown in Fig. 4a. When thermal conversion occurs in the first ampoule with a higher temperature,
the changes in the linear character of increase in temperature appear on curves 1 and 3 (in the zone of the
points C and D); the temperature in the second ampoule in these time intervals does not alter its slope, since
it does not attain the value corresponding to the start of the endothermal effect. In this case, the substance in
the second ampoule plays the role of a standard. Thereafter, as the temperature rises, the effect appears in the
second ampoule, and the slope of the T2(τ) curve is changed; the curve of recording of the temperature of
the substance in the first ampoule in this time interval does not change its slope, because thermal conversion
in it was already completed earlier. Accordingly, a thermal effect in the second ampoule will be fixed on the
∆T(τ) curve. Thus, the same effect is recorded twice in the same test, since the same substance is contained
in both ampoules.

Simultaneous recording of the temperatures in both ampoules and of the temperature drop between
them makes it possible to separate the main effects from parasitic ones attributable to the difference in the
conditions of heat exchange between the ampoules. For example, if the change in the character of heating on
one curve is not repeated on the other, this effect cannot be considered as reliable. A substantial advantage
of the method of a nonstandard differential thermal analysis is that the interval of time needed for heating the
chambers and the temperature drop between them can easily be selected such that the thermal effects in the
ampoules would not overlap.

It is important to note that the recording, in one experiment by the method of nonstandard differential
thermal analysis, of thermal graphs of heating and cooling of the substance investigated makes it possible to
establish the degree of the identity and reversibility of thermal effects, to record the effects of overcooling in
solidification of substances, to study the influence of a gaseous medium and ultimately to obtain additional
information on its physicochemical and thermophysical properties that is inaccessible by standard methods of
thermal analysis.

NOTATION

a, k, C, λ, M, d, l, s, Ss, and Stot, coefficient of heat transfer, thermal diffusivity, total heat capacity,
thermal conductivity, mass, perimeter, height, cross-sectional areas of the side and total surface of the ele-
ments of the thermal structure; T, temperature; T0, fixed temperature of the temperature chamber; τ, time;
mblock

e , mc.layer, and mth.st are the experimentally determined rates of cooling the block, contact layer, and the
thermal structure "block−object−contact layer"; m0, true rate of cooling the object; ∆T = T2(l2, τ) − T3

′ (l2 + l3,
τ), temperature drop on the object; (VT1

 − VT2
), analog difference of temperatures on the end faces of the

object in the temperature interval τ2 − τ1; v, rate of heating of the elements of the thermal structure; C2, C3,
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Csam, and Cc, total heat capacities of the block, the thermal structure "cell−sample," the sample, and the cell;
Mw, Md.m, Csp.d.m, mass of water, mass and specific heat of dry dispersed material; L, r, and R, length and
internal and external radii of ampoules, respectively; q, rate of absorption or evolvement of heat in endo- or
exothermal effects in a substance; a1

am and a2
am, heat-transfer coefficients of ampoules 1 and 2; k1,2

am, λ1,2
am, and

C1,2
am, thermal diffusivity, thermal conductivity, and total heat capacity of substances in ampoules 1 and 2. 
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